INTERNATIONAL A LEVEL

Further Pure Maths 2

Exercise 4D

1 a The initial half-line goes through $z=4+\mathrm{i}$ and satisfies $\arg (z)=0$ so the line is parallel to the real axis. The terminal half-line goes through z and satisfies $\arg (z)=\frac{\pi}{2}$, so it's perpendicular to the real axis. Because the inequalities are not strict, the half-lines are included in the region. Thus:

b $-1 \leqslant \operatorname{Im}(z) \leqslant 2$ describes two lines limiting the possible range of imaginary parts of z. The inequalities are not strict, so the half-lines are included in the region. Thus:

INTERNATIONAL A LEVEL

Further Pure Maths 2

1 c $\frac{1}{2} \leqslant|z|<1$. Each of these inequalities describes a circle centred at $(0,0) \cdot \frac{1}{2} \leqslant|z|$ gives the region outside of the circle centred at $(0,0)$ with radius $r=\frac{1}{2}$, including the circle.

The second inequality, $|z|<1$, describes the region inside the circle centred at $(0,0)$ with radius $r=1$ but excluding the circle itself, since the inequality is strict.

Thus the region described by $\frac{1}{2} \leqslant|z|<1$ is the following:

Further Pure Maths 2

1 d $-\frac{\pi}{3} \leqslant \arg (z+i) \leqslant \frac{\pi}{4}$ describes the region between and including two half-lines. The initial one goes through $z=-i$ and satisfies $\arg (z+i) \leqslant-\frac{\pi}{3}$. The terminal half-line also goes through $z=-i$ and satisfies $\arg (z+i) \leqslant \frac{\pi}{4}$.

where $\triangleleft B A C=\frac{\pi}{4}$ and $\triangleleft C A D=\frac{\pi}{3}$

2

$|z| \leqslant 5$
$|z| \leqslant|z-6 i|$
$|z|=5$ represents a circle centre $(0,0)$, radius 5
$|z|=|z-6 \mathrm{i}|$ represents a perpendicular bisector of the line joining $(0,0)$, to $(0,6)$ and has the equation $y=3$.

$\arg z=\frac{3 \pi}{4}$ is a half-line with equation $y=-x$, which goes through the centre of the circle, $(-1,1)$.

INTERNATIONAL A LEVEL

Further Pure Maths 2

$4|z| \leqslant 3$ and $\frac{\pi}{4} \leqslant \arg (z+3) \leqslant \pi$
$|z|=3$ represents a circle centre $(0,0)$ radius 3 .
$\arg (z+3)=\frac{\pi}{4}$ is a half-line with equation $y-0=1(x+3) \Rightarrow y=x+3, x>0$.
Note it passes through the points $(-3,0)$ and $(0,3)$. $\arg (z+3)=\pi$ is a half-line with equation $y=0, x<-3$.

INTERNATIONAL A LEVEL

Further Pure Maths 2

5 a The first region, $\left\{z \in \mathbb{R}:-\frac{\pi}{2} \leqslant \arg (z+1+\mathrm{i}) \leqslant-\frac{\pi}{4}\right\}$, describes all numbers lying between the two half-lines going through $z=-1-\mathrm{i}$. The inequalities are not strict, so the half-lines are included in the region. The initial half-line satisfies $-\frac{\pi}{2} \leqslant \arg (z+1+i)$. The terminal half-line satisfies $\arg (z+1+\mathrm{i}) \leqslant-\frac{\pi}{4}$. Thus we have

The second region, $\{z \in \mathbb{R}:|z+1+2 \mathrm{i}| \leqslant 1\}$, describes the inside of the circle centred at $(-1,-2)$ with radius $r=1$ and includes the circle itself:

Thus the region inside both of the regions described above is as follows

INTERNATIONAL A LEVEL

Further Pure Maths 2

5 b The first region describes a circle but we need to algebraically work out its radius and centre.
To that end, represent z in real and imaginary parts and square both sides:

$$
\begin{aligned}
& z=x+y \mathrm{i} \\
& 2|z-6| \leqslant|z-3| \\
& 2|x-6+y \mathrm{i}| \leqslant|x-3+y \mathrm{i}| \\
& 2 \sqrt{(x-6)^{2}+y^{2}} \leqslant \sqrt{(x-3)^{2}+y^{2}} \\
& 4\left[(x-6)^{2}+y^{2}\right] \leqslant(x-3)^{2}+y^{2} \\
& 4\left[x^{2}-12 x+36+y^{2}\right] \leqslant(x-3)^{2}+y^{2} \\
& 4 x^{2}-48 x+144+4 y^{2} \leqslant x^{2}-6 x+9+y^{2} \\
& 3 x^{2}-42 x+3 y^{2}+135 \leqslant 0 \\
& x^{2}-14 x+y^{2}+45 \leqslant 0 \\
& (x-7)^{2}-49+y^{2}+45 \leqslant 0 \\
& (x-7)^{2}+y^{2} \leqslant 4
\end{aligned}
$$

So the region required is that inside and including the circle centred at $(7,0)$ with radius 2 :

Now, the second regions describes all complex numbers whose real part is less than or equal to 7 :

Numbers lying in both of these regions simultaneously are shown on the diagram below:

INTERNATIONAL A LEVEL

Further Pure Maths 2

6 a The region $|z+6| \leqslant 3$ describes the inside of the circle centred at $(-6,0)$ with radius $r=3$ and includes the circle itself:

b Numbers z satisfying $|z+6| \leqslant 3$ lie in the region shaded above. The numbers with smallest and largest argument lie on the intersections of lines going through the origin and tangential to the circle:

Since $\triangleleft A Z_{1} O=\frac{\pi}{2}$, we know that $\sin \theta=\frac{3}{6}=\frac{1}{2}$ where $\theta=Z_{1} \hat{O} A$.
Hence $\theta=\frac{\pi}{6}$, and $\arg \left(z_{1}\right)=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$.
By symmetry, $\arg \left(z_{2}\right)=\arg \left(z_{1}\right)+2 \theta=\frac{7 \pi}{6}$
Thus for any z satisfying $|z+6| \leqslant 3$ we have $\frac{5 \pi}{6} \leqslant \arg (z) \leqslant \frac{7 \pi}{6}$

INTERNATIONAL A LEVEL

Further Pure Maths 2

7 a $\frac{3 \pi}{4} \leqslant \arg (z-8) \leqslant \pi$ describes the region between and including two half-lines going through $(8,0)$. The initial half-line satisfies $\frac{3 \pi}{4}=\arg (z-8)$ and the terminal one satisfies $\arg (z-8)=\pi$. Thus:

$\operatorname{Im}(z) \leqslant \operatorname{Re}(z)$ describes numbers whose imaginary part is less than or equal to their real part:

Numbers that belong to both these regions are shown on the diagram below:

b The two lines above intersect at $(4,4)$ creating a triangle with height $h=4$ and base $a=8$.
Thus the area of that region is Area $=\frac{1}{2} \times 8 \times 4=16$.

INTERNATIONAL A LEVEL

Further Pure Maths 2

8 a $\{z:|z-3+2 i| \geqslant \sqrt{2}|z-1|\}$ describes a circle and we need to algebraically find its centre and radius. Write $z=x+\mathrm{i} y$:
$|x-3+2 \mathrm{i}+\mathrm{i} y| \geqslant \sqrt{2}|x-1+\mathrm{i} y|$
$\sqrt{(x-3)^{2}+(2+y)^{2}} \geqslant \sqrt{2} \cdot \sqrt{(x-1)^{2}+y^{2}}$
$x^{2}-6 x+9+4+4 y+y^{2} \geqslant 2 x^{2}-4 x+2+2 y^{2}$
$x^{2}+2 x+y^{2}-4 y-11 \leqslant 0$
Complete the squares:
$(x+1)^{2}-1+(y-2)^{2}-4-11 \leqslant 0$
$(x+1)^{2}+(y-2)^{2} \leqslant 16$
So the region described by this equation is the inside of the circle centred at $(-1,2)$ with radius $r=4$ together with the circle.

$\left\{z: 0 \leqslant \arg (z+1+2 \mathrm{i}) \leqslant \frac{\pi}{3}\right\}$ describes the region between and including the two half-lines going through $z=-1-2 \mathrm{i}$. The initial line satisfies $\arg (z+1+2 \mathrm{i})=0$, so it is parallel to the real axis.
The terminal line satisfies $\arg (z+1+2 \mathrm{i})=\frac{\pi}{3}$:

Finding the intersection of the two regions gives:

INTERNATIONAL A LEVEL

Further Pure Maths 2

$8 \mathbf{b}$ To find the area of the shaded region we first need to find the angle $C \hat{A} B=\theta$.

Since $D \hat{B} O=\frac{\pi}{3}$ and $D \hat{B} A=\frac{\pi}{2}$, we have that $O \hat{B} A=\frac{\pi}{6}$. Since the triangle $A B C$ is isosceles, $B \hat{C} A=\frac{\pi}{6}$ as well and therefore $C \hat{A} B=\frac{2 \pi}{3}$. Thus the area can be calculated as
Area $=\frac{r^{2}}{2}(\theta-\sin \theta)=\frac{16}{2}\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)=\frac{16 \pi}{3}-4 \sqrt{3}$.
c The point with the largest imaginary value lies where the line $B O$ intersects the circle, i.e. point C.
Line $B O$ satisfies $y=2 x$. Substituting this into the equation of the circle gives:
$x^{2}+2 x+4 x^{2}-8 x-11=0$
$5 x^{2}-6 x-11=0$
$5(x+1)\left(x-\frac{11}{5}\right)=0$
The point with $x=-1$ is represented by B, so we are interested in the point with $x=\frac{11}{5}$ and $y=\frac{22}{5}$.
Thus the maximum value of $\operatorname{Im}(z)=\frac{22}{5}$

INTERNATIONAL A LEVEL

Further Pure Maths 2

Challenge

We want to find the region defined by $\{z \in \mathbb{R}: 6 \leqslant \operatorname{Re}((2-3 i) z)<12\}$. Write $z=x+\mathrm{i} y$. Then:
$6 \leqslant \operatorname{Re}((2-3 i)(x+i y))<12$
$6 \leqslant \operatorname{Re}(2 x+3 y+\mathrm{i}(2 y-3 x))<12$
$6 \leqslant 2 x+3 y<12$
So the initial line is described by $6 \leqslant 2 \operatorname{Re}(z)+3 \operatorname{Im}(z)$. Rearranging we get
$\operatorname{Im}(z) \geqslant 2-\frac{2}{3} \operatorname{Re}(z)$. Note that the inequality is not strict, so the line will be included in the region. Similarly, for the other inequality we get $\operatorname{Im}(z)<4-\frac{2}{3} \operatorname{Re}(z)$. Here the inequality is strict, so the line will not be included in the region:

$\{z \in \mathbb{R}:(\operatorname{Re} z)(\operatorname{Im} z) \geqslant 0\}$. For a product of two numbers to be positive, they both need to be positive, or both need to be negative. Hence this region looks as follows:

Since the inequality is not strict, both axes are included in the region.
The intersection of the two regions is as follows:

