Solution Bank

Exercise 4D

1 a The initial half-line goes through z = 4 + i and satisfies arg(z) = 0 so the line is parallel to the real axis. The terminal half-line goes through z and satisfies $arg(z) = \frac{\pi}{2}$, so it's perpendicular to the real axis. Because the inequalities are not strict, the half-lines are included in the region. Thus:

b $-1 \le \text{Im}(z) \le 2$ describes two lines limiting the possible range of imaginary parts of z. The inequalities are not strict, so the half-lines are included in the region. Thus:

Solution Bank

1 c $\frac{1}{2} \le |z| < 1$. Each of these inequalities describes a circle centred at (0,0). $\frac{1}{2} \le |z|$ gives the region outside of the circle centred at (0,0) with radius $r = \frac{1}{2}$, including the circle.

The second inequality, |z| < 1, describes the region inside the circle centred at (0,0) with radius r = 1 but excluding the circle itself, since the inequality is strict.

Thus the region described by $\frac{1}{2} \leqslant |z| < 1$ is the following:

Solution Bank

1 d $-\frac{\pi}{3} \leqslant \arg(z+i) \leqslant \frac{\pi}{4}$ describes the region between and including two half-lines. The initial one goes through z=-i and satisfies $\arg(z+i) \leqslant -\frac{\pi}{3}$. The terminal half-line also goes through z=-i and satisfies $\arg(z+i) \leqslant \frac{\pi}{4}$.

where $\triangleleft BAC = \frac{\pi}{4}$ and $\triangleleft CAD = \frac{\pi}{3}$

2

$$|z| \leqslant 5$$

$$|z| \leqslant |z - 6i|$$

|z| = 5 represents a circle centre (0,0), radius 5 |z| = |z - 6i| represents a perpendicular bisector of the line joining (0,0), to (0,6) and has the equation y = 3.

3 $|z+1-i| \le 1$ $|z-(-1+i)| \le 1$

Inside of a circle centre (-1, 1) radius 1

 $\arg z = \frac{3\pi}{4}$ is a half-line with equation y = -x, which goes through the centre of the circle, (-1, 1).

Solution Bank

4
$$|z| \leqslant 3$$
 and $\frac{\pi}{4} \leqslant \arg(z+3) \leqslant \pi$

|z|=3 represents a circle centre (0,0) radius 3.

$$arg(z+3) = \frac{\pi}{4}$$
 is a half-line with equation $y-0=1(x+3) \Rightarrow y=x+3, x>0$.

Note it passes through the points (-3, 0) and (0, 3).

 $arg(z+3) = \pi$ is a half-line with equation y = 0, x < -3.

Solution Bank

5 a The first region, $\left\{z \in \mathbb{R} : -\frac{\pi}{2} \leqslant \arg\left(z+1+\mathrm{i}\right) \leqslant -\frac{\pi}{4}\right\}$, describes all numbers lying between the two half-lines going through $z=-1-\mathrm{i}$. The inequalities are not strict, so the half-lines are included in the region. The initial half-line satisfies $-\frac{\pi}{2} \leqslant \arg\left(z+1+\mathrm{i}\right)$. The terminal half-line satisfies $\arg\left(z+1+\mathrm{i}\right) \leqslant -\frac{\pi}{4}$. Thus we have

The second region, $\{z \in \mathbb{R} : |z+1+2i| \le 1\}$, describes the inside of the circle centred at (-1, -2) with radius r = 1 and includes the circle itself:

Thus the region inside both of the regions described above is as follows

 $(x-7)^2 + y^2 \leqslant 4$

Solution Bank

5 b The first region describes a circle but we need to algebraically work out its radius and centre. To that end, represent z in real and imaginary parts and square both sides:

To that clid, represent 2 in rear and finds
$$z = x + yi$$

$$2|z - 6| \le |z - 3|$$

$$2|x - 6 + yi| \le |x - 3 + yi|$$

$$2\sqrt{(x - 6)^2 + y^2} \le \sqrt{(x - 3)^2 + y^2}$$

$$4\left[(x - 6)^2 + y^2\right] \le (x - 3)^2 + y^2$$

$$4\left[x^2 - 12x + 36 + y^2\right] \le (x - 3)^2 + y^2$$

$$4x^2 - 48x + 144 + 4y^2 \le x^2 - 6x + 9 + y^2$$

$$3x^2 - 42x + 3y^2 + 135 \le 0$$

$$x^2 - 14x + y^2 + 45 \le 0$$

$$(x - 7)^2 - 49 + y^2 + 45 \le 0$$

So the region required is that inside and including the circle centred at (7,0) with radius 2:

Now, the second regions describes all complex numbers whose real part is less than or equal to 7:

Numbers lying in both of these regions simultaneously are shown on the diagram below:

Solution Bank

6 a The region $|z+6| \le 3$ describes the inside of the circle centred at (-6, 0) with radius r=3 and includes the circle itself:

b Numbers z satisfying $|z+6| \le 3$ lie in the region shaded above. The numbers with smallest and largest argument lie on the intersections of lines going through the origin and tangential to the circle:

Since $\triangleleft AZ_1O = \frac{\pi}{2}$, we know that $\sin \theta = \frac{3}{6} = \frac{1}{2}$ where $\theta = Z_1\hat{O}A$.

Hence $\theta = \frac{\pi}{6}$, and $\arg(z_1) = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$.

By symmetry, $\arg(z_1) = \arg(z_1) + 2\theta = \frac{7\pi}{6}$

Thus for any z satisfying $|z+6| \le 3$ we have $\frac{5\pi}{6} \le \arg(z) \le \frac{7\pi}{6}$

Solution Bank

7 a $\frac{3\pi}{4} \le \arg(z-8) \le \pi$ describes the region between and including two half-lines going through

(8,0). The initial half-line satisfies $\frac{3\pi}{4} = \arg(z-8)$ and the terminal one satisfies $\arg(z-8) = \pi$.

Thus:

 $\operatorname{Im}(z) \leq \operatorname{Re}(z)$ describes numbers whose imaginary part is less than or equal to their real part:

Numbers that belong to both these regions are shown on the diagram below:

b The two lines above intersect at (4,4) creating a triangle with height h = 4 and base a = 8. Thus the area of that region is Area $= \frac{1}{2} \times 8 \times 4 = 16$.

Solution Bank

8 a $\{z:|z-3+2i| \geqslant \sqrt{2}|z-1|\}$ describes a circle and we need to algebraically find its centre and radius. Write z=x+iy:

$$|x-3+2i+iy| \ge \sqrt{2} |x-1+iy|$$

$$\sqrt{(x-3)^2 + (2+y)^2} \ge \sqrt{2} \cdot \sqrt{(x-1)^2 + y^2}$$

$$x^2 - 6x + 9 + 4 + 4y + y^2 \ge 2x^2 - 4x + 2 + 2y^2$$

$$x^2 + 2x + y^2 - 4y - 11 \le 0$$

Complete the squares:

$$(x+1)^{2}-1+(y-2)^{2}-4-11 \le 0$$

$$(x+1)^{2}+(y-2)^{2} \le 16$$

So the region described by this equation is the inside of the circle centred at (-1, 2) with radius r = 4 together with the circle.

 $\left\{z:0\leqslant\arg\left(z+1+2\mathrm{i}\right)\leqslant\frac{\pi}{3}\right\}$ describes the region between and including the two half-lines going

through z = -1 - 2i. The initial line satisfies arg(z + 1 + 2i) = 0, so it is parallel to the real axis.

The terminal line satisfies $\arg(z+1+2i) = \frac{\pi}{3}$:

Finding the intersection of the two regions gives:

Solution Bank

8 b To find the area of the shaded region we first need to find the angle $\hat{CAB} = \theta$.

Since $D\hat{B}O = \frac{\pi}{3}$ and $D\hat{B}A = \frac{\pi}{2}$, we have that $O\hat{B}A = \frac{\pi}{6}$. Since the triangle ABC is isosceles,

 $B\hat{C}A = \frac{\pi}{6}$ as well and therefore $C\hat{A}B = \frac{2\pi}{3}$. Thus the area can be calculated as

Area =
$$\frac{r^2}{2} (\theta - \sin \theta) = \frac{16}{2} \left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2} \right) = \frac{16\pi}{3} - 4\sqrt{3}.$$

c The point with the largest imaginary value lies where the line BO intersects the circle, i.e. point C. Line BO satisfies y = 2x. Substituting this into the equation of the circle gives:

$$x^2 + 2x + 4x^2 - 8x - 11 = 0$$

$$5x^2 - 6x - 11 = 0$$

$$5(x+1)(x-\frac{11}{5})=0$$

The point with x = -1 is represented by B, so we are interested in the point with $x = \frac{11}{5}$ and $y = \frac{22}{5}$. Thus the maximum value of $\text{Im}(z) = \frac{22}{5}$

Solution Bank

Challenge

We want to find the region defined by $\{z \in \mathbb{R} : 6 \le \text{Re}((2-3i)z) < 12\}$. Write z = x + iy. Then:

$$6 \leqslant \operatorname{Re}((2-3i)(x+iy)) < 12$$

$$6 \leqslant \operatorname{Re}(2x + 3y + \mathrm{i}(2y - 3x)) < 12$$

$$6 \leqslant 2x + 3y < 12$$

So the initial line is described by $6 \le 2 \operatorname{Re}(z) + 3 \operatorname{Im}(z)$. Rearranging we get

 $\text{Im}(z) \geqslant 2 - \frac{2}{3} \text{Re}(z)$. Note that the inequality is not strict, so the line will be included in the region. Similarly, for the other inequality we get $\text{Im}(z) < 4 - \frac{2}{3} \text{Re}(z)$. Here the inequality is strict, so the line will not be included in the region:

 $\{z \in \mathbb{R} : (\operatorname{Re} z)(\operatorname{Im} z) \geqslant 0\}$. For a product of two numbers to be positive, they both need to be positive, or both need to be negative. Hence this region looks as follows:

Since the inequality is not strict, both axes are included in the region. The intersection of the two regions is as follows:

